# Limiting impact to conserve resources

Sagar Cements has pledged to become Net Zero by the year 2050. Efforts are in full swing to achieve this milestone by minimising carbon footprint and maximising resource efficiency. Multiple initiatives are underway, while several more are planned to accomplish this goal. It includes using industrial waste as an alternate fuel, zero liquid discharge, waste heat recovery system, switching to renewable power etc. Biodiversity management has also been given priority status as our operations impact the local flora and fauna at site locations. A risk management framework associated with climate and allied risks works as a firewall to safeguard the interests of the company and the operating environment.

13 CALINE 14 UT AEDIN WATER 15 DI LAG Gudipadu, A.P. Plant



Cement manufacturing has always been very energy intensive business. As a part of our net zero pledge, we have been increasing our usage of non-fossil fuel sources to meet our energy needs. Digitisation and innovative process interventions are being done to achieve better efficiency towards energy savings.

## Current status on energy transition

| Solar plants<br>Waste heat recovery<br>system | Mattampally site | 1.35 MW  |
|-----------------------------------------------|------------------|----------|
|                                               | Bayyavaram site  | 0.13 MW  |
|                                               | Mattampally site | 8.8 MW   |
|                                               | Jeerabad site    | 5.3 MW   |
| Solar roof panel                              | Corporate office | 80 KW    |
| Hydro GBC                                     |                  | 4.3 MW   |
| LIS                                           |                  | 4.0 MW   |
| Total                                         |                  | 23.96 MW |

## Our targets

|                                                               | 2030 | 2050 | Current status |
|---------------------------------------------------------------|------|------|----------------|
| Transport by<br>Green Vehicles in %                           | 30   | 100  | Ordered        |
| Share of renewables in operations in %                        | 50   | 100  | 27             |
| Specific electric<br>consumption per ton<br>of cement in kwh  | 70   | 65   | 78             |
| Specific thermal<br>consumption per ton<br>of clinker in Kcal | 700  | 685  | 726            |
| Thermal Substitution ratio in %                               | 25   | 50   | 3              |

## Plan to action

- Reduce energy intensity by use of energy efficient processes and upgradation of equipment
- Minimise energy losses and maximise waste energy recovery
- Systems for monitoring energy generation and usage
- Migrating to zero emission transport and enhancing thermal efficiency

SDGs impacted

## Highlights

**3,68,242** MwH Total Energy consumption

**5,25,116** MT

Total Fuel Consumption (Including Alternate Fuel 35,999 MT)

77.79 KwH/MT Energy Intensity

**3,01,006** MwH Non-Renewable Energy Consumption

**67,236** MwH Green Energy Consumption

**59,518** MwH Waste Heat Recovered

**23.96** MW Clean energy capacity

**700.28** Kg CO<sub>2</sub>/tonne Group carbon footprint

**1.56** MW Solar power portfolio

27% Energy from Green sources (including 32,248 MwH Hydro Power exported)

Company Over Re Creative Value ESG Vision 2030 Statutory y Repor Stater



Reducing our carbon footprint has been the primary agenda on our path to net zero. By transitioning to less energy-intensive processes and satisfying our energy needs to non-fossil fuel sources, we believe we will be able to deliver on our climate commitments. This undertaking involves huge capital investment to adapt the latest technology-based approaches and a change of mindset within our ecosystem.

## Our targets

|    |                                                           | 2030                  | 2050 | Current<br>status |
|----|-----------------------------------------------------------|-----------------------|------|-------------------|
| 1. | Substitution of RM<br>with de-carbonated<br>material in % | 2                     | 5    | 0.0               |
| 2. | Specific Electric consumption in kwh                      | 70                    | 65   | 78                |
| 3. | Thermal<br>Substitution<br>ratio in %                     | 25                    | 50   | 3                 |
| 4. | Clinker Factor in %                                       | 64                    | 50   | 76                |
| 5. | Specific Heat<br>Consumption in<br>KCal                   | 700                   | 685  | 726               |
| 6. | Green Electricity<br>Ratio in %                           | 50                    | 100  | 27                |
| 7. | Transport by Green<br>Vehicles in %                       | 30                    | 100  | Ordered           |
|    | Scope 1 reduction                                         | 495 Kg Net<br>CO2/MT  |      | 655               |
|    | Scope 2 reduction                                         | 8 Kg Net<br>CO2/MT    |      | 25                |
|    | Scope 3 reduction                                         | 15.5 Kg Net<br>CO2/MT |      | 20                |
|    | Aligned with SBTi<br>1.5 C scenario<br>by 2030            |                       |      |                   |
|    | Initiate CCU/CCS<br>to achieve net zero<br>by 2050        |                       |      |                   |

**700.28** kg CO2/t cementitious GHG Intensity

**500** MT SOx emission

**3356** MTNOx emission

We have been capturing our GHG inventory since 2015. A large part of our emissions arise from limestone-based cement manufacturing process. Intensive efforts of operational efficiency are taken to reduce these numbers. We are also inventorying Scope 1, 2, 3 emissions in line with the SBTi guidelines and GHG protocol. Scope 1 and 2 inventory is done covering all aspects of business while Scope 3 is limited to emissions from transportation and logistics. We are also partnering with academic institutions and research centres to excel in carbon capture and storage.

## Plan to action

A comprehensive environmental policy is in place to guide our teams to bring emissions down. Digitalisation and tech adoption across the value chain are important factors in achieving it. We also plan to reduce energy intensity while continuously increasing the ratio of green energy and alternate raw materials and fuels. Our performance objectives are mapped across the functional units and periodical reporting is done to all stakeholders.



We make a conscious effort to reduce our water usage. All manufacturing processes use harvested or recycled water, and fresh water is used only for human consumption. Our aim is to be water positive by upgrading water filtration plants, rainwater harvesting and zero liquid discharge. We are moving from water to air cooling systems to reduce and conserve water.

## Our targets

- To be 10x water positive by 2030
- 20% reduction in freshwater withdrawal to be achieved by 2030

## Water consumption pattern at SGC

|                         | Quantity consumed in (KL) |          |          |  |
|-------------------------|---------------------------|----------|----------|--|
| Source of water         | FY2023                    | FY2022   | FY2021   |  |
| Surface                 | 2,03,850                  | 1,73,781 | 1,34,218 |  |
| Ground                  | 2,44,441                  | 1,61,441 | 1,77,246 |  |
| Total Water<br>Consumed | 4,48,291                  | 3,35,221 | 3,11,464 |  |

## Highlights

**4,48,291** KL Total Water Withdrawn

80,653 KL Wastewater recycled

**80,653** KL Total Water Recycled/Reused

## 100%

Industrial water requirement through rainwater harvesting

112 L/tonne

of cementitious Water Intensity

71 Rainwater harvesting structures created

## Plan to action

- Introducing the water reporting system, including specific water consumption
- Measurement and monitoring of water sourcing and consumption
- Recycling/treatment of rejected water for reuse in process, plantation
- Promoting awareness about conservation among users

Company Overview Perforn

ance Review

Creative Value

ESG Vision 2030



A robust waste management policy is in place to facilitate our agenda of reducing, reusing and recycling resources. At SGC, hazardous and non-hazardous waste is segregated by our teams and is disposed off by following all necessary protocols. We also use the waste from other industries by appropriately treating and using it as an input to our operations. It reduces hazardous waste ending up in landfills and degrading the environment.

## Waste disposal

Total hazardous waste disposed

| Type of waste (MT)               | FY2023 | FY2022 | FY2021 |
|----------------------------------|--------|--------|--------|
| Hazardous Waste<br>Generated     | 23.80  | 48.10  | 5.28   |
| Non-Hazardous Waste<br>Generated | 58,806 | 63,077 | 34,894 |
| Plastic Waste Generated          | 21     | 28     | 0      |
| E-Waste Generated                | 0.08   | 3.48   | 0.27   |
| Bio-waste generated              | 0.03   | 0.11   | 0.02   |
| Total Waste Generated            | 58,851 | 63,156 | 34,900 |

#### Waste generated and consumed within the company

| Type of waste                            | Unit | FY2023 | FY2022 | FY2021 |
|------------------------------------------|------|--------|--------|--------|
| CPP fly ash and coarse ash (consumption) | Tons | 52,365 | 42,141 | 32,105 |
| CPP bed ash                              | Tons | 5,155  | 2,014  | 2,769  |
| Waste Oils and<br>Lubricants             | Tons | 20     | 44     | 5      |
| Oils and Oil soaked<br>Cotton Waste      | Kgs  | 1,372  | 1,207  | 0      |
| Total - Waste Generated<br>and Consumed  | Tons | 57,542 | 44,201 | 34,879 |

#### Waste generated and disposed to third party

| Type of waste                                               | Unit         | FY2023 | FY2022 | FY2021 |
|-------------------------------------------------------------|--------------|--------|--------|--------|
| Steel scrap                                                 | Tons         | 1,966  | 1,141  | 334    |
| Belt Scrap                                                  | Tons         | 13     | 10     | 0      |
| Batteries (Each<br>weighted 10kg)                           | Number       | 235    | 280    | 20     |
| E-Waste                                                     | Kgs          | 82.64  | 3,484  | 268.76 |
| Pharma & Hospital<br>Waste                                  | Kgs          | 30.06  | 109.29 | 18.06  |
| Others                                                      | Kgs          | 25,331 | 28,724 | 1.22   |
| Old & Damaged tyres<br>(Each weighted 5 kgs                 | s No's<br>s) | 140    | 33     | 0      |
| HDPE Scrap                                                  | Kgs          | 20,920 | 27,520 | 0      |
| Total - Waste<br>Generated &<br>disposed to third-<br>party | Tons         | 1,309  | 18,955 | 20     |

#### AFR consumed

| Type of waste (Tonnes)  | FY2023    | FY2022   | FY2021   |
|-------------------------|-----------|----------|----------|
| Chemical Gypsum         | 1,72,347  | 79,287   | 58,793   |
| Fly ash                 | 4,63,877  | 2,73,570 | 2,45,642 |
| Slag                    | 3,34,492  | 2,77,367 | 49,871   |
| Spent Carbon            | 4,509     | 7,943    | 6,921    |
| Carbon Black            | 75        | 156      | 835      |
| Iron Sludge             | 1,557     | 2,868    | 2,441    |
| Shredded Plastic        | 557       | 320      | 0        |
| Residue Derived Fuels   | 1         | 96       | 882      |
| Organic Residue         | 7,948     | 2,830    | 0        |
| Organic Liquid Solvents | 15,988    | 11,718   | 0        |
| Rice Husk               | 5,006     | 4,628    | 0        |
| Organic Waste           | 462       | 516      | 0        |
| Chrome Sludge           | 16,236    | 0        | 0        |
| Wooden Chips            | 188       | 0        | 0        |
| Dolachar                | 1,265     | 1,013    | 0        |
| Total - AFR             | 10,24,507 | 6,62,313 | 3,65,385 |

## Plan of action

- Minimising waste generation by adopting a hierarchal approach to reduce, reuse, recycle and recover by making use of viable technologies
- Ensuring all waste collected, stored, transported, and disposed in an environmentally acceptable manner
- Promoting the use of blended cements, thereby utilising the waste/by-products of other industries
- Implement best practices to source and consume Refuse Derived Fuel (RDF) in the kiln process with the larger objective of reducing environmental impact
- Framework development for using construction waste in production processes

## Our targets

- Reduce clinker factor and use cementitious waste materials
- Installation of waste heat recovery system



Fuel consumed (Including Alternate Fuel 35,999 MT)

**1,46,164** MT Gypsum consumed

**38,354** MT Iron ore consumed

1,557 MT Iron Sludge consumed

## Plan to action

- By giving preference to materials, products and services with lower environmental impact than the equivalent market alternative.
- Integrating the concept of reduce, reuse and recycle in the sourcing model.
- Encouraging suppliers and partners to adopt bestin-class practices.
- Creating awareness through trainings and development.

\*

## Biodiversity



We are aware of the impact caused by cement manufacturing on flora and fauna specific to our site locations. Our teams undertake all relevant mitigation measures to make sure the surrounding living world can co-exist. We work towards restoring natural ecosystems after mine closure by planting native plant species, using controlled blasting to reduce dust and noise emissions.

Large scale plantations are undertaken for green belt development along with the use of organic fertilisers and vermi composting. We have invested in employee training for biodiversity management, training our employees to become biodiversity lead auditors and having them assigned the responsibility of managing the biodiversity in and around the plants. Implement biodiversity management plans across all our plant locations in line with our biodiversity policy.

## Our targets

Creating a polyculture plantation across 5 hectares of land each year with about 1,000 saplings.

## Our targets

environmental impact.

|    |                                                 | 2030 | 2050 | Current status |
|----|-------------------------------------------------|------|------|----------------|
| 1. | Reduction in<br>clinker factor                  | 64%  | 50%  | 75%            |
| 2. | Increased use<br>of carbonated<br>raw materials | 2%   | 5%   | 0.00           |

The use of natural resources such as limestone,

silica and iron ore are core to the smooth

functioning of our business. Considering the

adopted a circular economy business model

where we are constantly developing ways to

products locally thereby facilitating minimal

replace these raw materials with their recycled

substitutes. Special efforts are made to source

restrictiveness of these resources we have

## Highlights



Company premises are fully compliant with CPCB guidelines

# Established goshala for cow care

## Actively participating in 'Harita Haram'

Telangana government initiative for afforestation

## Plan of action

- Carrying out impact assessment studies and implementing mitigation measures
- Preserving endemic, threatened or endangered species and protecting the natural habitat around the plant premises
- Promoting biodiversity awareness among all employees through training
- Biodiversity conservation in partnership with relevant stakeholders, including local governments, farmers, local communities, selfhelp groups, and non-governmental organisations
- Increase carbon sequestration by restoration of degraded village commons, riverbanks and tanks, foreshore plantations, and development of community-managed forests.